Problem 1. (1 point) METUNCC/Applied_Math/discrete/polynom.pg
Discretize the function $f(t)=2-t$ over the interval [1,3] with step-size $h=\frac{2}{3}$.
Sample points: $\mathrm{t}=\left[\begin{array}{l}- \\ - \\ -\end{array}\right] \quad$ Function: $\quad \mathrm{f}=\left[\begin{array}{l}\square \\ - \\ -\end{array}\right]$

Problem 2. (1 point) METUNCC/Applied_Math/discrete/euler1.pg
Use Euler's method to approximate the solution to $y^{\prime}=y-t, y(-2)=-2$ on the interval $[-2,0]$ with step-size $h=\frac{2}{3}$.
$t_{0}=-\quad y_{0}=$ \qquad
$y_{0}^{\prime}=$ \qquad
$t_{1}=$ \qquad $y_{1}=$
$y_{1}^{\prime}=$ \qquad
$t_{2}=-\quad y_{2}=-\quad$
$y_{2}^{\prime}=\square \quad$
$y_{2}^{\prime}=$
$t_{3}=$ \qquad $y_{3}=$ \qquad

Problem 3. (1 point) METUNCC/Applied_Math/discrete/order1-t.pg
Discretize the differential equation $y^{\prime}=2-2 t, y(0)=0$ over the interval $[0,1]$ with step-size $h=\frac{1}{3}$.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

Problem 4. (1 point) METUNCC/Applied_Math/discrete/order1-yt.pg
Discretize the differential equation $y^{\prime}+y=1-2 t, y(-1)=0$ over the interval $[-1,2]$ with step-size $h=1$.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

Problem 5. (1 point) METUNCC/Applied_Math/discrete/trig.pg
Discretize the function $f(t)=\cos (2 t)$ over the interval $[0, \pi]$ with step-size $h=\frac{\pi}{4}$.
Sample points: $\mathrm{t}=\left[\begin{array}{l}- \\ - \\ - \\ -\end{array}\right] \quad$ Function: $\mathrm{f}=\left[\begin{array}{l}\square \\ - \\ -\end{array}\right]$
(You may use 'sqrt' in your answer, but not 'sin' or 'cos'.)

Problem 6. (1 point) METUNCC/Applied_Math/discrete/order1-rand.pg
Discretize the differential equation $y^{\prime}+2 t y=2-2 t, y(-1)=1$ over the interval $[-1,2]$ with step-size $h=1$.

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
- \\
-
\end{array}\right]=\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]
$$

(Enter variables $y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}$ into webwork as y0, y1, y2, y3, y4, y5.)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

