Benjamin Walter Assignment Discrete_Functions_and_Derivatives due 11/11/2021 at 02:02pm EET

math210

Problem 1. (1 point) METUNCC/Applied_Math/discrete/polynom.pg

Discretize the function f(t) = 2 - t over the interval [1,3] with step-size $h = \frac{2}{3}$.

Problem 2. (1 point) METUNCC/Applied_Math/discrete/euler1.pg

Use Euler's method to approximate the solution to y' = y - t, y(-2) = -2 on the interval [-2,0] with step-size $h = \frac{2}{3}$.

 $t_1 = \underline{\qquad} y_1 = \underline{\qquad$

 $t_2 = \underline{\qquad} \qquad y_2 = \underline{\qquad} \qquad y_2 = \underline{\qquad}$

 $t_3 =$ ____ $y_3 =$ ____

Problem 3. (1 point) METUNCC/Applied_Math/discrete/order1-t.pg Discretize the differential equation y' = 2 - 2t, y(0) = 0 over the interval [0,1] with step-size $h = \frac{1}{3}$.

[— — —	y 1]	[]
	y2	=	
L — — —	y ₃		L — J

Problem 4. (1 point) METUNCC/Applied_Math/discrete/order1-yt.pg Discretize the differential equation y' + y = 1 - 2t, y(-1) = 0 over the interval [-1,2] with step-size h = 1.

$$\begin{bmatrix} --- & -- \\ -- & -- \\ -- & -- \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} --- \\ -- \\ -- \end{bmatrix}$$

Problem 5. (1 point) METUNCC/Applied_Math/discrete/trig.pg Discretize the function $f(t) = \cos(2t)$ over the interval $[0,\pi]$ with step-size $h = \frac{\pi}{4}$.

(You may use 'sqrt' in your answer, but not 'sin' or 'cos'.)

Problem 6. (1 point) METUNCC/Applied_Math/discrete/order1-rand.pg

Discretize the differential equation y' + 2ty = 2 - 2t, y(-1) = 1 over the interval [-1,2] with step-size h = 1.

Г	٦	I I	ר ־
	 _		
	 —		
L —	 —]	ΙL]

(Enter variables y_0 , y_1 , y_2 , y_3 , y_4 , y_5 into webwork as y0, y1, y2, y3, y4, y5.)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America